Current location - Trademark Inquiry Complete Network - Futures platform - How to realize the pricing of trident tree option with Matlab
How to realize the pricing of trident tree option with Matlab
function

[buy, sell] = TrinomialEuro(s0, k, t, n, r, sigma)

% s0 Base Asset Price

% k exercise price

% T expiration date

Percentage of steps

% risk-free interest rate

% sigma inventory change rate

deltat = T/n;

u = exp(sigma * sqrt(deltat));

d = 1/u;

m = 1;

p=(exp(2*r*deltat)+sigma^2*deltat-(d+ 1)*exp(r*deltat)+d)/((u^2- 1)-(u-

1)*(d+ 1));

q =(exp(r * deltat)- 1-(u- 1)* P)/(d- 1);

m = 1-Q-P;

for

i= 1:n+ 1

for

j= 1:n+2-i

s(i,j)=s0*u^(i- 1)*m^(j- 1)*d^(n+2-i-j);

w(i,j)=nchoosek(n,i- 1)*p^(i- 1)*nchoosek(n+ 1-i,j- 1)*m^(j- 1)*q^(n+2-i-j

);

x(i,j)=max(s(i,j)-k,0);

y(i,j)=max(k-s(i,j),0);

cv(i,j)=w(i,j)*x(i,j);

pv(i,j)=w(i,j)*y(i,j);

end

end

call = sum(cv(:)* exp(-r * T);

put = sum(PV(:)* exp(-r * T);

price = max(exp(-r * deltat)*(p * f( 1, 1)+q*f( 1,2)),0);